Jump to content

Heine–Borel theorem

From Wikipedia, the free encyclopedia
(Redirected from Heine-Borel)

In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:

For a subset of Euclidean space , the following two statements are equivalent:

  • is compact, that is, every open cover of has a finite subcover
  • is closed and bounded.

History and motivation

[edit]

The history of what today is called the Heine–Borel theorem starts in the 19th century, with the search for solid foundations of real analysis. Central to the theory was the concept of uniform continuity and the theorem stating that every continuous function on a closed and bounded interval is uniformly continuous. Peter Gustav Lejeune Dirichlet was the first to prove this and implicitly he used the existence of a finite subcover of a given open cover of a closed interval in his proof.[1] He used this proof in his 1852 lectures, which were published only in 1904.[1] Later Eduard Heine, Karl Weierstrass and Salvatore Pincherle used similar techniques. Émile Borel in 1895 was the first to state and prove a form of what is now called the Heine–Borel theorem. His formulation was restricted to countable covers. Pierre Cousin (1895), Lebesgue (1898) and Schoenflies (1900) generalized it to arbitrary covers.[2]

Proof

[edit]

If a set is compact, then it must be closed.

Let be a subset of . Observe first the following: if is a limit point of , then any finite collection of open sets, such that each open set is disjoint from some neighborhood of , fails to be a cover of . Indeed, the intersection of the finite family of sets is a neighborhood of in . Since is a limit point of , must contain a point in . This is not covered by the family , because every in is disjoint from and hence disjoint from , which contains .

If is compact but not closed, then it has a limit point . Consider a collection consisting of an open neighborhood for each , chosen small enough to not intersect some neighborhood of . Then is an open cover of , but any finite subcollection of has the form of discussed previously, and thus cannot be an open subcover of . This contradicts the compactness of . Hence, every limit point of is in , so is closed.

The proof above applies with almost no change to showing that any compact subset of a Hausdorff topological space is closed in .

If a set is compact, then it is bounded.

Let be a compact set in , and a ball of radius 1 centered at . Then the set of all such balls centered at is clearly an open cover of , since contains all of . Since is compact, take a finite subcover of this cover. This subcover is the finite union of balls of radius 1. Consider all pairs of centers of these (finitely many) balls (of radius 1) and let be the maximum of the distances between them. Then if and are the centers (respectively) of unit balls containing arbitrary , the triangle inequality says:

So the diameter of is bounded by .

Lemma: A closed subset of a compact set is compact.

Let be a closed subset of a compact set in and let be an open cover of . Then is an open set and

is an open cover of . Since is compact, then has a finite subcover , that also covers the smaller set . Since does not contain any point of , the set is already covered by , that is a finite subcollection of the original collection . It is thus possible to extract from any open cover of a finite subcover.

If a set is closed and bounded, then it is compact.

If a set in is bounded, then it can be enclosed within an -box

where . By the lemma above, it is enough to show that is compact.

Assume, by way of contradiction, that is not compact. Then there exists an infinite open cover of that does not admit any finite subcover. Through bisection of each of the sides of , the box can be broken up into sub -boxes, each of which has diameter equal to half the diameter of . Then at least one of the sections of must require an infinite subcover of , otherwise itself would have a finite subcover, by uniting together the finite covers of the sections. Call this section .

Likewise, the sides of can be bisected, yielding sections of , at least one of which must require an infinite subcover of . Continuing in like manner yields a decreasing sequence of nested -boxes:

where the side length of is , which tends to 0 as tends to infinity. Let us define a sequence such that each is in . This sequence is Cauchy, so it must converge to some limit . Since each is closed, and for each the sequence is eventually always inside , we see that for each .

Since covers , then it has some member such that . Since is open, there is an -ball . For large enough , one has , but then the infinite number of members of needed to cover can be replaced by just one: , a contradiction.

Thus, is compact. Since is closed and a subset of the compact set , then is also compact (see the lemma above).

Generalization of the Heine-Borel theorem

[edit]

In general metric spaces, we have the following theorem:

For a subset of a metric space , the following two statements are equivalent:

  • is compact,
  • is precompact[3] and complete.[4]

The above follows directly from Jean Dieudonné, theorem 3.16.1,[5] which states:

For a metric space , the following three conditions are equivalent:

  • (a) is compact;
  • (b) any infinite sequence in has at least a cluster value;[6]
  • (c) is precompact and complete.

Heine–Borel property

[edit]

The Heine–Borel theorem does not hold as stated for general metric and topological vector spaces, and this gives rise to the necessity to consider special classes of spaces where this proposition is true. These spaces are said to have the Heine–Borel property.

In the theory of metric spaces

[edit]

A metric space is said to have the Heine–Borel property if each closed bounded[7] set in is compact.

Many metric spaces fail to have the Heine–Borel property, such as the metric space of rational numbers (or indeed any incomplete metric space). Complete metric spaces may also fail to have the property; for instance, no infinite-dimensional Banach spaces have the Heine–Borel property (as metric spaces). Even more trivially, if the real line is not endowed with the usual metric, it may fail to have the Heine–Borel property.

A metric space has a Heine–Borel metric which is Cauchy locally identical to if and only if it is complete, -compact, and locally compact.[8]

In the theory of topological vector spaces

[edit]

A topological vector space is said to have the Heine–Borel property[9] (R.E. Edwards uses the term boundedly compact space[10]) if each closed bounded[11] set in is compact.[12] No infinite-dimensional Banach spaces have the Heine–Borel property (as topological vector spaces). But some infinite-dimensional Fréchet spaces do have, for instance, the space of smooth functions on an open set [10] and the space of holomorphic functions on an open set .[10] More generally, any quasi-complete nuclear space has the Heine–Borel property. All Montel spaces have the Heine–Borel property as well.

See also

[edit]

Notes

[edit]
  1. ^ a b Raman-Sundström, Manya (August–September 2015). "A Pedagogical History of Compactness". American Mathematical Monthly. 122 (7): 619–635. arXiv:1006.4131. doi:10.4169/amer.math.monthly.122.7.619. JSTOR 10.4169/amer.math.monthly.122.7.619. S2CID 119936587.
  2. ^ Sundström, Manya Raman (2010). "A pedagogical history of compactness". arXiv:1006.4131v1 [math.HO].
  3. ^ A set of a metric space is called precompact (or sometimes "totally bounded"), if for any there is a finite covering of by sets of diameter .
  4. ^ A set of a metric space is called complete, if any Cauchy sequence in is convergent to a point in .
  5. ^ Diedonnné, Jean (1969): Foundations of Modern Analysis, Volume 1, enlarged and corrected printing. Academic Press, New York, London, p. 58
  6. ^ A point is said to be a cluster value of an infinite sequence of elements of , if there exists a subsequence such that .
  7. ^ A set in a metric space is said to be bounded if it is contained in a ball of a finite radius, i.e. there exists and such that .
  8. ^ Williamson & Janos 1987.
  9. ^ Kirillov & Gvishiani 1982, Theorem 28.
  10. ^ a b c Edwards 1965, 8.4.7.
  11. ^ A set in a topological vector space is said to be bounded if for each neighborhood of zero in there exists a scalar such that .
  12. ^ In the case when the topology of a topological vector space is generated by some metric this definition is not equivalent to the definition of the Heine–Borel property of as a metric space, since the notion of bounded set in as a metric space is different from the notion of bounded set in as a topological vector space. For instance, the space of smooth functions on the interval with the metric (here is the -th derivative of the function ) has the Heine–Borel property as a topological vector space but not as a metric space.

References

[edit]
[edit]